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ABSTRACT 
Cumulant (higher-order statistics) based inverse fil- 

ter criteria maximizing Jr , ,  = ICmlr/lCrlm, where 
m # r and C, (C,) denotes the mth-order (rth-order) 
cumulant of the inverse filter output, have been pro- 
posed for blind deconvolution and equalization with on- 
ly non-Gaussian output measurements of an unknown 
linear time-invariant (LTI) system. This paper shows 
that the maximum of J,,,, associated with the true in- 
verse filter of the unknown LTI system, exists only for 
r to be even and m > r, otherwise, Jr,, is unbound- 
ed. The admissible values for (r, m) = (2s,l+ s) where 
1 > s 2 1 include (2,3), (2,4) and (4,6) proposed by 
Tugnait, Wiggins, Shalvi and Weinstein in addition to 
more new ones such as (2,5), (2,6) and (4,5). Some 
simulation results for the inverse filter criteria J,,, with 
the proposed admissible values of (r, m) are then pro- 
vided. Finally, we draw some conclusions. 

1. INTRODUCTION 

Blind deconvolution as well as equalization is a quite 
known statistical signal processing problem to estimate 
the desired signal U(.) with a given set of measure- 
ments .(.), n = 0, 1, . . . , N - 1 based on the follow- 
ing convolutional model 

.(n) = U(.) * h(n)  + w(n)  
00 

= h ( i ) u ( n - i ) + w ( n )  (1)  
1=-W 

where w ( n )  is measurement noise and h(n)  is an un- 
known linear time-invariant (LTI) system which cor- 
responds to such as the source wavelet in seismic de- 
convolution, the channel impulse response in channel 
equalization and the vocal-tract filter in speech process- 
ing. A major conventional approach to this problem is 
tlie correlation (second-order statistics) based predic- 
t ive deconvolution. The deconvolved signal is obtained 
by processing .(n) with a minimum-phase linear pre- 
diction error (LPE) filter, which corresponds to an es- 
timate for the inverse filter of h ( n )  except for phase 
distortion because h(n may not be minimum-phase in 

[ l ,2] ,  known as cumulants, have been considered in var- 
ious signal processing areas where z( n )  is non-Gaussian 

practice. Recently, hig b er-order (2 3) statistics (HOS) 

and measurement noise w(n)  is Gaussian with unknown 
statistics, partly because cumulants of z ( n )  can be used 
to  extract not only the amplitude information but also 
phase information of h(n)  and partly because higher- 
order cumulants of Gaussian noise w(n)  are zero. 

Cumulant based inverse filter criteria [3-71 have been 
considered for the estimation of the inverse filter hl (n)  
of the unknown LTI system h(n). Assume that w(n) is 
an estimate for hl (n)  and e(.) is the output signal of 
v(n)  in response to z(n) ,  i.e., 

e(n) = z ( n )  * w(n) (2) 
and C, denotes the mth-order cumulant of e(n). A 
class of cumulant based inverse filter criteria has the 
following form [3-5]: 

(3) 

where m # r, m 2 2 and r 2 2. Wiggins [3] pro- 
posed an inverse filter criterion by maximizing J = 
E[e4( . ) ] / (E[e2(n)] )2 ,  which is related to J,,, by IJ - 
3t2 = J2,4. Shalvi and Weinstein [4] proposed an in- 
verse filter criterion by maximizing IC41 subject to the 
constraint E[e2(n)]  = E[u2(n)] .  Tugnait [5] also pro- 
posed inverse filter criteria by maximizing 52 3 or J2 4 ,  
or J4,6. However, for other choices of r and m, i t ' is  
still unknown whether maximizing J,,, can lead to the 
true inverse filter of h(n) .  Chi and Kung [6] estimated 
the inverse filter by maximizing a single cumulant IC, I 
for m 2 3 when h(n)  is an allpass system. 

In this paper, we show that maximizing the objec- 
tive function J,,, given by (3), which only uses two 
cumulants of e(n) ,  is applicable only for some certain 
choices of and m which lead to more new inverse fil- 
ter criteria in addition to the aforementioned existing 
inverse filter criteria as special cases of the admissible 
r and m. 

2. ADMISSIBLE CUMULANT ORDERS 
FOR THE INVERSE FILTER CRITERIA J,,, 

First of all, let us make the following assumptions 
for measurements z ( n )  modeled by (1). 
( A l )  The unknown LTI system h(n)  is causal sta- 

ble with either minimum phase or nonminimum 
phase and a stable inverse filter h l ( n )  of h(n)  
exists. 
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The driving input U(.) is real, zero-mean, s- 
tationary, independent identically distributed 
(i.i.d.) non-Gaussian with variance U: and mth- 
order cumulant "lm where m 2 3. 
Measurement noise w(n) is Gaussian with un- 
known statistics. 

The input ~ ( n )  and the noise w(n) are statisti- 
cally independent. 

The admissible cumulant orders for the inverse filter 
criteria given by (3) are described in the following the- 
orem. 

Theorem 1. Assume that z (n )  is the noisy signal gen- 
erated from the model given by (1) under the previous 
assumptions ( A l )  through (A4) .  Then the following 
two statements are true: 
( S l )  Jr,m(v(n)) is unbounded except the case that T = 

2s (i.e., Tis even), m = l+s > T where 1 > s 2 1. 
Moreover, 

(4) 

(S2) The optimum 6(n) associated with J2s,l+J(6(n)) 
= m~z{J2~ ,1+~(w(n) ) }  where 1 > s 2 1 satisfies 

q n )  * h(n)  = crqn - r )  (5) 

where a # 0 is a scale factor and r is an un- 
known integer, for the two cases that s = 1 with 
S N R  = CO and that s > 1 with finite SNR.  

Two remarks for the inverse filter criteria JzS,lts are 
summarized as follows: 

For ( s , l )  = (1,2), (s,l)=(l,3), and s,1)=(2,4), 

J2,3 , J2,4 and 54,~  , respectively. For any other 
choices of (s, l ) ,  J2J,l+s such as J2,5, JZ,G and J4,5 
are new. 

In practice, the two cumulants CzS and Cl+s re- 
quired by must be replaced by the corre- 
sponding sample cumulants Cas and C/+s which 
are well-known consistent estimates for CZs and 
CltS [2], respectively. Therefore, the optimum 
estimate 6(n is also a consistent estimate for 

and an unknown time delay. 

JaS,lts reduce to Tugnait's inverse fi i ter criteria 

A h 

the inverse fi 1 ter hr(n)  except for a scale factor 

Next, let us present how we find the optimum inverse 
filter G(n) associated with the inverse filter criteria 
J2s,l+s with finite data set {z(O), z(l), . . . , z ( N  - 1)). 
The inverse filter v ( n )  is assumed to be a causal FIR 
filter of order equal to L.  Then the inverse filter output 
e(n)  given by (2) can be expressed as 

where v and x, are ( L  + 1) x 1 column vectors given 
by 

v = [v(O), v ( l ) ,  "., I@)]* (7) 
and 

x, = [z (n) ,  z (n  - l), . . . , z (n  - L)IT, (8) 

respectively. Note that the inverse filter criteria J2s,l+s 
where 1 > s 2 1 are highly nonlinear functions of v s- 
ince sample cumulants Czs and Clts are nonlinear func- 
tions of v. A gradient type numerical optimization al- 
gorithm is used to search for the optimum inverse filter 
estimate v. At the i th iteration v j  is updated with 

A 

vi  = i j - 1  + pgi-1 (9) 

where p is a positive constant and gi-1 is the gradient 
of J25,!+3 with respect to v for v = Vd-1. As other 
numerical optimization algorithms, an initial condition 
for i o  is needed to initialize the above numerical op- 
timization algorithm. For instance, a minimum-phase 
LPE filter can be used as the initial condition for i o .  
Next, let us present some simulation results to justify 
that the inverse filter criteria JzS l+J where 1 > s 2 1 
can be used for the estimation of the inverse filter of 
the unknown LTI system h(n)  and for deconvolution. 

3. SIMULATION RESULTS 

Two simulation examples are to be presented to sup- 
port the proposed unified class of inverse filter criteria 
J2s,l+s where 1 > s 2 1 presented in Theorem 1. The 
first example is a performance test to the inverse fil- 
ter criterion J2,3 proposed by Tugnait and the new J2,5 
(i.e., s = 1 and 1 = 4 in J Z ~ , ~ + ~ ) .  The second example is 
seismic deconvolution using the new criterion J2,s (i.e., 
s = 1 and 1 = 5 in JzS,lts). 

Example 1: (Performance test) 
The driving input U(.) used was a zero-mean, i.i.d. 

Exponential random sequence with variance U: = 1, 
skewness 73 = 2, kurtosis 74 = 6 and fifth-order cumu- 
lant 7 5  = 24. The unknown LTI system h(n) used was 
a nonminimum-phase second-order autoregressive mov- 
ing average (ARMA) system with the transfer function 
(taken from [7]) given by 

(10) 
1 - 2.7%-1 + 0 . 5 ~ - ~  
1 + 0.12-1 - 0.122-2 

H ( t )  = 

Synthetic noisy data x(n) of length N = 4096 were 
generated for S N R  = lOdB and noise w(n)  being 
white Gaussian. The inverse filter v (n )  was assumed 
to be a causal FIR filter of order L = 16. An ini- 
tial condition v = [0, . . ., 0, .  1, va( l ) ,  . . ., va(8)lT 
was used to initialize the associated gradient type op- 
timization algorithm for finding the optimum i where 
{ 1,  vb(l), . . . , 8)) were the coefficients of an eighth- 
order LPE filter o 6 tained by the well-known Burg's al- 
gorithm [8]. 

The simulation results over 30 independent runs as- 
sociated with J2,3 and J2,5  (new criterion) are shown 
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in Figures l(a) and l(b), respectively. Note that each 
inverse filter estimate i obtained from each indepen- 
dent run was normalized by //ill = 1 and the associat- 
ed unknown time delay was artificially removed. From 
Figures l(a) and l(b),  one can see that the estimat- 
ed inverse filter is basically unbiased for both J 2 , 3  and 
J 2 , 5 ,  but it has a smaller variance for J2,s than for J z , ~ .  
The reason for this is simpjy that sample cumulant Cs 
has larger variance than C3 for finite data [2]. These 
simulation results justify that where 1 > s 2 1 
can be used to estimate the inverse filter of an unknown 
nonminimum-phase LTI system. 

With no doubt, when J 2 , 3  is sufficient in certain 
practical applications, Jr,m for higher admissible r and 
m such as J 2 , 5  are redundant. Nevertheless, we would 
like to emphasize that when cumulants of measure- 
ments are small or close to zero for lower r and m such 
as J 2 , 3  and J2 ,4 ,  the inverse filter criteria Jr,,,, only for 
higher admissible r and m such as J2,s can be consid- 
ered for the estimation of inverse filter. 

Example 2. (Seismic deconvolution) 
Assume that U(.) is a Bernoulli-Gaussian sequence 

(solid lines in Figures 2(b) and 2(c)) which is input to 
a third-order nonminimum-phase system (taken from 
[6]) with the following transfer function 

A 

(11) 
1 + 0 . 1 ~ - 1  - 3 . 2 7 2 5 ~ - ~  + 1 . 4 1 1 2 5 ~ - ~  

H ( z )  = 
1 - 1.9z-l-t 1 . 1 5 2 5 ~ - ~  - 0 . 1 6 2 5 ~ - ~  

The synthetic noisy data z (n )  were generated for 
N = 2048, S N R  = 27dB and noise w ( n )  being 
white Gaussian. Because 73 = 0 (skewness) and 
7 5  = 0 but 7 2  = G; = 0.1, 7 4  = 0.27 (kurtosis) 
and 7 6  = 1.08 for this case, the new inverse fil- 
ter criterion J2,6 was used to estimate the causal in- 
verse filter v(n) of order L = 24. The initial condi- 
tion v = [o, . .  . , 0, 1, vb(l), . .  ., Vb(12)IT, where 
{ 1, vb( l), . . . , v6( 12)) were the coefficients of a twelfth- 
order LPE filter obtained by Burg’s algorithm, was 
used to initialize the associated gradient type optimiza- 
tion algorithm for finding the optimum v. 

The obtained inverse filter estimate (dash-dotted 
line) normalized by I vll = 1 is shown in Fig- 

inverse filter hr(n)  (solid line) also normalized by 
E,=-, Jh1(n)1~ = 1 where the unknown time delay 
between 6(n)  and h ~ ( n )  was artificially removed. For 
comparison, a conventional minimum-phase LPE filter 
~ , ( n )  of order equal to 24 was also obtained by Burg’s 
algorithm, which is depicted by a dashed line in Figure 
2(a). Note, from Figure 2(a), that 6(n) is quite close 
to the true inverse filter hr(n)  but very different from 
the LPE filter in waveshape. The data z ( n )  were then 
processed by the LPE filter to obtain the predictive 
deconvolved signal eb(n) which is depicted by a dot- 
ted line in Figure 2(b) for N = 0 - 511 together with 
the true input sequence U(.) depicted by a solid line. 
One can observe, from Figure 2(b), that in addition to 
a scale factor, each spike in U(.) is associated with a 
residual wavelet which begins with two opposite peak- 
s and gradually decays. The reason for this is simply 

ure 2(a) together wit L- the true noncausal stable 

lx 

that an allpass distortion remains in eb(n) because only 
the amplitude response of nonminimum-phase source 
wavelet can be equalized by vb(n). The deconvolved 
signal e(n) (dotted line) obtained by the optimum in- 
verse filter depicted by a dash-dotted line in Figure 
2(a) is shown in Figure 2(c) for N = 0 - 511 together 
with the true input sequence U(.) (solid line). One can 
see, from Figure 2(c), that e(n) approximates U(.) well 
except for a scale factor. Comparing the deconvolved 
signal shown in Figure 2(b) with the one shown in Fig- 
ure 2(c), one can easily see that e n )  is indeed a much 
better estimate of U(.) than eb(n 0 because the phase 
distortion (allpass distortion) in ea(n) (dotted line in 
Figure 2(b)) was almost inexistent in e(n) (dotted line 
in Figure 2(c)). These simulation results support that 
the proposed inverse filter criterion J2,6 can be used for 
deconvolution. 

As discussed in Example 1, one surely can use Tug- 
nait’s criterion J 2 , 4  rather than the new criterion J 2  6 
for this example because 7 4  = 0.27 # 0. This example 
only emphasizes the application of the new J 2 , 6  to de- 
convolution although both of J 2 , 4  and J 2 , 6  are members 
of the unified class of J2s , l+s  where 1 > s 2 1 presented 
in Theorem 1. 

4. CONCLUSIONS 

We have shown that the cumulant based inverse fil- 
ter criteria Jr,m given by (3) which use an mth-order 
cumulant and an rth-order cumulant for blind deconvo- 
lution and equalization require r to be even and m > r 
(see Theorem 1). Therefore, these criteria form a family 
of criteria J2s , l+J  where 1 > s 2 1 and they include not 
only the existing inverse filter criteria as special cases 
of (1, s )  but also new inverse filter criteria (see (RI ) ) .  
The optimum inverse filter associated with J 2 J , l + s  can 
only be obtained by iterative nonlinear optimization 
algorithms which can only guarantee a local optimum 
solution. Some simulation results were provided to sup- 
port that J2s,l+s with 1 > s 2 1 are effective. 
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Figure 1. Simulation results ( N  = 4096, S N R  = 10dB) 
for Example 1.  The average (dashed line as well as 
fone standard deviation (dash-dotted lines] of 30 inde- 
pendent inverse filter estimates together with the true 
inverse filter (solid line) associated with (a) 52,s and 
(b) 5 2 , 5 ,  respectively. 
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Figure 2. Simulation results ( S N R  = 27dB) associat- 
ed with 52,6 for Example 2. (a) The true noncausal 
stable inverse filter hl line), the inverse filter 
estimate (dash-dotted LPE filter (dashed 
line) of order equal to  by Burg’s algorithm; 
(b) the predictive deconvolved signal eb(n) dotted line 
together with the true input signal u(n) (so id line); (c 
the deconvolved signal e(.) (dotted line) obtained by 
the optimum inverse filter together with the true input 
signal U(.). 
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